
changed the parameter < in (14). Similar data was obtained for other values of the deter- 
mining parameters of the problem. 

NOTATION 

(r, r z), cylindrical coordinates; R, radius of the cylindrical ingot; v, withdrawal 
rate; T*, phase transformation temperature; T c, ambient temperature; To, initial temperature 
of the melt; k, heat of phase transformation; k, thermal conductivity; c, heat capacity; ~, 
coefficient of heat transfer with the environment; Pe = vRc/k, Peclet number; St = k/cT*, 
Stefan number; Bi = ~R/k, Biot number. 
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THE STUDY OF NONLINEAR PROBLEMS OF HIGH-INTENSITY 

NONSTATIONARY HEAT TRANSFER 

O. N. Shablovskii UDC 536.2.01 

Analytic solutions are found of the nonlinear equations of heat transfer for a 
dominating effect of relaxation on the thermal flux evolution. The physical 
interpretation is given of the results obtained as applied to heat exchange 
problems in one-dimensional regions with moving boundaries. 

i. Potential Systems of Equations of Heat Transfer. In the one-dimensional case the 
equations of heat transfer, in which the finite relaxation time of thermal flux is accounted 
for, are [i, 2]: 

eT,+q~ = O, (1) 

~Tx -[- Yqt @ q = O. (2) 

We take into account that the following inequality is valid in a number of high-intensity 
nonstationary thermal processes [2-4] 

t?Oq/Otl~q, O ~ < t ~ < t l < 8 < ~ ,  TC[T~, T21, (3) 

making it possible to simplify the mathematical model (i), (2) and use in a considered 6- 
neighborhood of the initial moment of time the approximate equations 

cTt+q~=O, ~T~+?qt=O. (4) 

The integral equation 

t 

q=-c-~ [qO(x)__j' (~kT~/y) dt], ~----exp(t/?), 
0 
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following from (2) shows that the restriction (3) is valid, for example, for effects in which 
the wave property of transfer of thermal perturbations dominates [3-6], as well as for highly 
fluent processes, when t o << 7, where to is the characteristic time. 

For the thermophysical medium parameters we further consider various special variants of 
the dependences I = X(T, t), c = c(T, x), ~ = y(T, t). 

The potential [7] of the system of equations (4) can be introduced as follows: 

T j. v----q9 t, q = - - q % ,  v ( T ) =  [%(T)/?(T)ldT,  c = c ( T ,  x), 
0 

~ t t  = Z~~ tO 2 = ~,/C'~, ~ = w ( q ) t ,  X) .  
( 5 )  

The equations of heat transfer (i), (2) correspond to the potential ~ = ~(x, t): 

T 

u==-r q - - - - -~h ,  u ( T ) = j "  c(T) dT, L = k ( T ,  t), ? = ? ( T ,  t), 
0 

"e~. + ~h = (X/c) ~ .  ( 6 )  

Assuming that hypothesis (3) is satisfied in (6), we obtain 

r  = w~r  w = w (r t). 

2. Exact Solutions of the Equations of High-lntensity Heat Transfer (4). 
Legendre transformation r x) = tv - # to Eq. (5): 

�9 o~ % ~ - -  (%~)~ = w -~ (v, ~,  

t(v, x ) = ~ ,  q(v, x ) = ~ x .  

( 7 )  

We apply the 

( 8 )  

( 9 )  

Subsequently, we reach the Monge-Ampere equation (8), investigated by the method of the 
intermediate integral [7, 8]. Using the mathematical results of this study, we find the exact 
solution of the heat transfer equations (4) in the parametric form (9). 

If w2(v) is an arbitrary function, the solution is 

t (v, x) = 4- xw -1 3 r- X' (v), q (v) = __ ~ w -I dv + const, (10) 

where X(V) is also arbitrary. This implies that in the class of solutions (i0) the specific 
thermal flux depends only on temperature, while the isotherms propagate at the rate of the 
thermal wave. 

If 

then, according to 

w-"- = p (~) (x -}- lo) -~, fi = (v + lO/(x -t- lo), l o, l l - - c o n s t ,  (11) 

[8], we find 

t = +_+_ f (I~___L) + 7.' @ ,  q = ~ ~f (fi-----)-) + x ( l ~ ) -  fix' @ ,  ( 1 2 )  
x-t-  lo x + lo 

where f(8), 
when the thermophysical parameters l, c, 7 depend on temperature only: 

f (p) = fop -~, c?lX = [~ (v + h)-L v' (T) = X/?, f o - -  const. 

The restrictions (13) are satisfied, for example, by the functions 

=~oT"' ,  C=Co Tn', 7 ~ ? o T  ~,  T6[T1,  T~], 

= koexpnlT,  c =  coexpn2T, ? = ~oexpn~T, TC[T~, T2], 

X(8) are arbitrary functions. From (ii) follows the important special case, 

(13) 

(14) 

(15) 
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where ~0, Co, 70 are arbitrary positive numbers, and nz, n2 are arbitrary. For the power de- 
= , = f0Y0 - + I) 4, while for the pendence (14) we have s 0 3n 3 = 3n I + n 2 + 4, coho s 2 3(n I n3 

exponential (15) 

lx?o (n~ - -  n~) = X o, 3n3 = 3n, + n2, cok~ = fg ~g (n~- -  n~)S. ( 16 )  

We now construct the solution of Eqs. (7). We apply to them the Legendre transformation 
F(u, t) = xu - ~, and obtain the Monte-Ampere equation: 

F=~, Ftt - -  (F~,t) 2 = - -  w ~ (u, t), x (u, t) -= F . ,  q (u, t) = Ft. 

According to [8], for an arbitrary dependence wi(u) we have a solution similar to (i0): 

x (u, t) = _+__ tw (u) + ~' (u), q (u) = +_ ~. w (u) du -F const. 

This simple c l a s s  of thermal fields is not analyzed any further. 

If 

w 2 (u, t) = [~ (~) (t ~- ko) -~, ~ = (u -~ kl) (t ~- ko) -~, ko, kx -- const, (17) 

the solution is represented in the form 

x = ~ f (r - 1 - ,  (~), q --  --T- r (r --1- o" (r - -  ~o" (cz), ( 1 8 )  
t + ko t-{- ko 

where f(~), o(~) are arbitrary functions. The relationship (17) makes it possible to iso- 
late the special case, when ~, c, y depend on temperature only: 

f = fo~-~, ~/cv = f~ ( .  + kl) -~, u' (r )  -- c ( r ) ,  f o - -  const. (19) 

The  r e s t r i c t i o n  ( 1 9 )  i s  o b e y e d ,  f o r  e x a m p l e ,  by t h e  f u n c t i o n s  ( 1 4 ) ,  f o r  w h i c h  k1 = O, n 3 = 
n l  + 3 n 2  + 4 ,  x 0 f ~ ( n 2  + 1) ~ = h o c g ,  a s  w e l l  a s  f u n c t i o n s  ( 1 5 )  i f  kz = c 0 / n 2 ,  na = n l  + 3n2 ,  

2 4 = X0cg. Xof0n2 

Thus, for the approximate equations (4) we found the two exact analytic solutions (12), 
(13) and (18), (19), containing one arbitrary function of a single argument. The sign ! in 
these solutions refers to the two different families of characteristics of the system (4); 
from now on we choose everywhere the upper sign. The sign of the number f0 is selected 
according to the specific conditions of the problem. 

3. Nonlinear Heat Exchange at a Wall. We provide the physical interpretation of the 
solution (12), (13). Let the relaxing thermal field be determined by the dependences 

X T s  q o = - - ~ o t ,  v ( T o ) = V o ( X ) ,  T 0 < o ~ ,  ( 2 0 )  

~ 0 ~ c o a s t ,  x ~ < ~ x < x ~ < ~ ,  tC[O, td,  

satisfying Eqs. (i), (2) within the approximation (3) adopted. 

Consider a process flowing in the region between the immobile wall x = x w and the front 
of the thermal wave x = xQ(t), x0(0) = Xw, propagating along the background (20): 

x=x~=O:  q=q~[v(T~)]; x=xo(t): v=v0, q---qo. 

T h e s e  b o u n d a r y  c o n d i t i o n s  c o r r e s p o n d  t o  t h e  f a c t  t h a t  h e a t  e x c h a n g e  a t  t h e  w a l l  o c c u r s  by  a 
given nonlinear law, while the temperature and the specific thermal flux are continuous at 
the wave front. The solution (12), (13) satisfies the conditions mentioned if 

~ 1 

where s = -xl < 0 is a numerical parameter. The function R(8) is obtained from qw(Vw) by 
replacing the argument v w by s - s R(8) = qw(s - s in which case it must be bounded 
IR(~)[ < ~ , and such that the algebraic equation R(~0) = 0 have a real root 80 ~ 0. For 
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example, if qw = ql + q2Tw b, then for the variant (14) this function exists for b(n I - ns + 
i) < 0. Depending on the sign of the number 60, the solution is constructed in the region 
6 ! 60 < 0 or 6 ~ 60 > 0. Taking into account that each line of the family ~ = const pro- 
pagates at the rate of the thermal wave, we select 6 = 60 and find the equation of motion: 

Xo (t) + lo = fo13o2 [t - -  z' (go)] -~, z' ([~o) = - -  fo/iofi2o < O, fo < O, 

which depends on the thermophysical properties of the medium and of the parameter 80, charac- 
terizing the relaxing thermal background (20). For increasing 80 the thermal wave velocity 
decreases monotonically. The front of the thermal wave is found initially at the wall, and 
for t > 0 it propagates to the right with negative acceleration. Heat transport is described 
by the solution (12), (13), (21), and a simple equation is obtained for the specific thermal 
flux: 

( - z , ,  / 
q(~,, x ) =  Zo(V+l,)  + q ~ ,  To+-~ ] '  

providing a smooth representation on the nature of its dependence on the boundary conditions. 

4. Strong Breakdown of Thermal Field. Based on the solution (12), (13) we consider a 
thermal field, containing a strong breakdown x = xj(t). Studies of the nature of the breakdowns 
generated in nonlinear media with thermal relaxation and abibliography of studies on this sub- 
ject are contained in [2, 4, 6]. The conditions for strong breakdown of the thermal field 
were analyzed in [9, i0], and they are 

q j - - q ~  = N ( u i - - u ~ ) ,  A j - - A ~  = ~iN(qj--q~), N =  x~ (t), y ~ c o n s t .  ( 22 )  

We c h o o s e  t h e  v a r i a n t  ( 1 5 ) ,  ( 1 6 ) ,  a s suming  n 3 -- 0,  n 2 = - 3 n t  > 0.  The q u a l i t a t i v e  be-  
h a v i o r  o f  t h e s e  d e p e n d e n c e s  (y -= c o n s t ,  c ' ( T )  > 0,  ~ ' ( T )  < 0) c o r r e s p o n d ,  f o r  ex am p le ,  a t  
t e m p e r a t u r e s  f rom 1 .8  t o  2 .1~  t o  t h e r m o p h y s i c a l  p r o p e r t i e s  o f  l i q u i d  h e l i u m  [ 1 1 ] ,  in  which  
s econd  sound shock  waves can  be g e n e r a t e d  [6 ,  12 ] .  S e v e r a l  r e s u l t s  o f  t h e  s t u d y  o f  e x p e r i -  
m e n t a l  d a t a  [11] were  g i v e n  i n  [ 5 ] .  

For t = 0 let there by strong breakdown at the point x = 0. On its right the medium 
temperature is constant: v(T*) - const, q* - 0, and on the left is located the thermal field 
v~ q~ x 6 [-4H, 0), continuously passing into the "cold" background T - 0, q - 0, x < 
-H < 0. We assume that T~ < T*, so that at t > 0 a cooled shock wave propagates to the right, 
and a continuous heated wave - to the left [9]. We construct the solution for x @ [x0, xj], 
t > O .  

Methodologically the given problem is similar to the gas dynamics problem of decay of 
an arbitrary rupture [7]. 

Satisfying the conditions at the wall (22), we find 

x (1~) = ~ c~ - 1~ ~(v + [0 

iv (~1 + 4 P  = m ~ -  m~ fro + c1~) ~ < o, l~ -- ~o/'~nx < o, vj = V (~j), 

N = (vj + lO~/ej, q1 = ej/(vj + l O, e~ : [0 + Cl~j'  (24) 

rnln~. = mo.Col~, n~ (Co + u*nf) = nf, fo > O, 

~ (t) = 3~  vii e-ll [m#j (2fo + ~,:) - -  3ml1 -~ > O, 

~o -_ ~j (o).= (v o + zO l~' < o, ~o < ~ <~ ~ (t) < o. 

The integration in (23) is carried out on both sides up to the value 6~. 
down stability conditions [7] wj < N < w* we obtain the estimate 

2 

fo > -  ~ c~ > o, c i  > o, (m~ - md~) ~ < low*. 

From the break- 

(25) 
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The initial jump v~ - v* must be assigned with account of (25) and the inequality v? + s 0. 
J 3 

The equation of motion of the thermal wave front $ = 80 ~ const is expressed by the 
equation 

Xo (t) + Zo = [o137~ [ t - -  z '  (1~o)1 -~, to = / - / - -  (fot~ z' (13o)) > o, 

H = -- Xo (0) > O. 

A consequence of the continuity of T, q at x = x0(t) is the equality f0 + C180 = 0 making it 
possible tocalculate 60. From the condition xj(0) = 0 we obtain 

c~ [(~ + ~) ~]~ = qo + ~) (~ + h) - fo~o (~)~ < o, 

in which case the inequality X'(~0) < 0 is satisfied. 

The constants H, C 1 characterize the initial thermal field left of the rupture by means 
of the dependences t(v~ x) = 0, q(v~ x) = X(~~ x I-H, 0). 

The solution of the problem stated is given in parametric form by Eqs. (12), (13), (23), 
(24). The vector of specific thermal flux is directed toward heating, which is slowly dis- 
placed. With the flow of time the temperature at the breakdown front decreases monotonically, 
and the absolute value of thermal flux increases. In the case E~ ~ m2(g~) = + 3mi > 0 the 

3 3 
cooled shock wave moves with acceleration at t > 0. If the thermophysical parameters of the 
medium and the initial conditions of the problem are such that E~ < 0, then there exists a 

J 
finite value t2, determined by the condition Ej(t2) = 0, for which the rate N(t 2) is minimal. 

For 0 ! t < t 2 < ~ the motion of the shock wave is slowed down, while for t > t 2 it is 
accelerated. 

5. Nonstationary Melting of a Solid. Thermal processes of nonstationary melting of 
material under the action of intense energy fluxes were investigated on the basis of the 
parabolic equation of heat conductivity (y ~ 0) in many studies [13]. Most results were ob- 
tained under the condition that the effect of the liquid phase on heat transport to the solid 
is insignificant. A more rigorous analysis requires simultaneous treatment of thermal effects 
in both phases [14]. A review of studies on the problem of accounting for the finite propaga- 
tion velocity of heat during phase transformations is provided in [13]. It is noted that in 
the case of melting of metals the thermal relaxation is manifested for sufficiently high values 
of thermal flux density at the surface. 

We apply the solution (18), (19) to the problem of melting of materialunder the action of 
a surface heat source for moments of time near the initial moment, neglecting the effect of 
layer decay. Consider the process between the melting boundary x = Xm(t) and the front of the 
thermal wave, propagating according to the relaxing thermal field: 

u (To) ~ Uo (t) - -  %t + u ~ ao > O, uo (h)  = Au,., 0 < A < 1, t C [0, h l ,  

qo(x) = bo--aoX, - - o o < - - H ~ < ~ x < ~ - - H o < O ,  ~o, bo, u ~  

These dependences satisfy Eqs. (I), (2) within the approximation adopted (3). The boundary 
conditions are 

x = xm(O:  q =- q - - L ( y x / j +  x~) ,  u = u,,------- c o n s t ,  ( 2 6 )  

X=Xo(t): q--=qo, u=uo .  (27) 

Here q = q(t + k0) is an arbitrary analytic function. 

The family lines s = const propagate with the velocity w of the thermal wave; there- 
fore, choosing = = s 0 > 0, u ~ = s0, k0 - kl > 0, we find the equation of motion of its front 
x0(t) = [f0[s~(t + k0)] + o'(s0), k 0 > 0. The continuity conditions (27) will be satisfied 
if o(s 0) = b 0. In the solution (18), (19) we choose u(T m) = Um, and determine the equation 
of motion of melting boundary 

[o u ~  + kl 
xm (t)----- x (u~, t) = ~2 (t + ko) + o '  ( a ,d ,  ~ = 

t + k o  
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Initially the energy is observed if we take into account the approximation (3), i.e., we omit 
the term Lx'(t). For the function a(~) we then obtain a third order linear inhomogeneous 
differentia~ equation, whose general solution is represented by the equations: 

O~ 

(a) = ~z i" 't~ (~) dcz + G ,  �9 = RW~ + RW, ,  ~ E [ao, ao l ,  
05 0 

trg 

1 

~1 (~) =- a-~ (z),  W~_ (=) = ~-2Ko (z), z = 2urn (aL?)-  T, 
| - -  _ _  ~R1--C1 2S1, R2=C0-4-2S0., C1, C2, C3 const, 

s~ (~) = ~ ~ s  (=)/<o (z) a~, s~ (~) = ~ ~ s  (=) to(~) d=, 
cr r 0 

t i t  trt 

2 S Ca) = .~  [(~ (a) _ C~ + (Wu~)IILw=L O (=) = 7/[(urn + kO/~l. 

(28) 

Here ~(=) is obtained from q(t + k0) by replacing the argument t + k0 by (Um + kl)/=; and 
10(z) and K0(z) are the zeroth order modified Bessel functions of the first and second kind. 

Let f0 > 0, Xm(0) = 0, x0(0) = -H0 < 0, the thermal wave and the melting boundary pro- 
pagate to the left, toward negative x values. Taking into account that u 0 < Um, 0 < =0 < c%n 
!=~, from the conditions 

xo(O<x~(O~<O, xg(t)<O, x~(t)<O, tE[O, td 
we obtain the estimates: 

a"(a)>0,  a ' " (a )<0 ,  0<z(=)~-~.4, =6[=0, ~%1, a o > u ~ / 4 L y ,  

G >  ~ -i- qo/..O, <~(=) 
B(1 --A) u,~ [ 1 

B1 = aoko (Au,~ + kO 
#. 

B (Aura + k,j  ~ 
B.. =- -=2 (u,~ + k~) ~ ' 

c~ foK~ (z ~ 
Z~ Ko (z~ + (u~ + k~) Ko 

~ - -  fO �9 C j i ,  (z ~  = u., + ~ 

Qi < oo, /tl > - -  Xo (tO, 

(Aura + k~) ~ ] 

J (Urn + kO ~" 

B - 2[o z~ (~,o)~, 

(~z~ < m i n  {B~, B~}, 

Cdo (zO) > 0. 

The last two inequalities are easily satisfied by the choice Cz < 0. The thermal field be- 
tween the region boundaries is described by the solution (18), (19), (28), and at the initial 
moment of time they depend on the constants u a > 0, k0 > 0, CI < 0, C 3 > 0. The first equa- 
tion in (18) is convenient for finding isotherms in the melting zone of the solid. The speci- 
fic thermal flux at the melting boundary increases monotonically for t @ [0, tl]; the front 
of the thermal wave moves very slowly. 

The examples considered of nonlinear problems of heat transfer show the effectivenes of 
using the analytic solutions (12), (13) and (18), (19) in high-intensity nonstationary pro- 
cesses, in which the effect of thermal flux relaxation is predominant. 

NOTATION 

x, Cartesian coordinate; t, time; T, temperature; q, specific thermal flux; X, thermal 
conductivity coefficient of the medium; c, specific bulk heat capacity; y, relaxation time of 
thermal flux; w, propagation velocity of small thermal disturbances; L, phasetransition latent 
heat per unit volume of the material; ~(t), assigned density of thermal flux at the surface; 
and A'(T) = X(T); Ej = miE ~ + 3ml. Subscripts: 0 (subscript), value of a function at the 

initial moment of time; 0 (superscript), a thermal field parameter ahead of the thermal wave 
front x = x0(t); *, thermal field parameters ahead of a strong discontinuity; j, m, w, func- 
tional values at the line of strong discontinuity x = xj(t) at the melting boundary x = xm(t), 
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and at the wall x = Xw; a prime above a function is ordinary differentiation; and independent 

variables as subscripts denote partial derivatives. 
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PRACTICALLY ACHIEVABLE ACCURACY AND RELIABILITY OF 

THE SOLUTION OF INVERSE HEAT-CONDUCTION PROBLEMS 

P. I. Balk UDC 536.24.02 

We develop a method of solution of inverse heat-conduction problems which makes it 
possible to obtain a guaranteed minimum of reliable information in conditions of 
indeterminacy. 

In practical analyses of data from model and natural thermal experiments, wide attention 
has been given to methods based on the solution inverse heat-conduction problems (IHCP) with 
the use of regularization [i]. It is known, however, that the regularization theory gives 
only a potential possibility to solve incorrectly posed problems. The regularization method 
itself has an asymptotically optimal character when the quality of the approximate solution is 
estimated from its behavior in comparison with the exact solution when the error of observa- 
tions tends to zero. If the number of measurements is small and the noise is appreciable, the 
convergence of approximate solutions is of secondary importance, and the principal problem is 
to extract the maximum amount of reliable information from the available data, and to isolate 
fragments of solution which, under the existing indeterminacy, are observed reliably. 

This formulation of the problem must be viewed alongside the fact that, in realistic 
conditions, there are always sufficiently large regions of competing interpretations of the 
input data (which are, objectively, of equal value) and any "optimum" solution chosen according 
to some principle, is capable of adequately reflecting only individual fragments of the true 
solution. It is difficult to analyze reliability of the local properties of the approximate 
solutions in terms of the classical estimates of accuracy constructed in terms of the metrics 
Lp. These facts stimulate the development of applied methods (adaptive [3], descriptive [4], 
local [5] and stepwise [6] regularizations) which make it possible to narrow down maximally 
the mass of the permissible solutions of the inverse problem by virtue of a more complete 
allowance for the restrictions on the properties of solutions and noise, and of a more special 
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